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We investigate evolution of dry patches in a thin film of a volatile liquid on a heated plate in the framework
of a model that accounts for the effects of surface tension, evaporation, thermocapillarity, and disjoining
pressure. Dry areas on the plate are modeled by isothermal microscopic films which are in thermodynamic
equilibrium with the vapor. For nonpolar liquids such equilibrium is achieved due to van der Waals forces,
well-defined capillary ridges are formed around growing dry patches, contact line speed increases with time.
For polar liquids the microscopic film is formed by combined action of van der Waals and electrical double
layer forces, capillary ridge is small, and contact line speed quickly approaches a constant value. Thermocap-
illary stresses tend to increase the height of the capillary ridges formed around expanding patches. Numerical
simulations demonstrate that the proposed model is capable of describing a number of complicated phenomena
observed in experimental studies of evaporating films including fingering instabilities and merger of growing
dry patches.
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I. INTRODUCTION

Moving contact lines in air-liquid-solid systems have been
studied extensively �1,2�. A variety of insteresting phenom-
ena, such as contact angle hysteresis, fingering instability,
and formation of various dewetting patterns, has been ob-
served experimentally and explained theoretically. However,
a related problem of motion of a line of contact between
solid, liquid, and vapor phase of the same liquid, received
much less attention. Experimental investigations of such
moving contact lines have been carried out only recently and
uncovered remarkably rich dynamics in a simple problem of
nucleation and growth of dry patches in thin liquid films �3�.
Initially circular dry patches became unstable as they ex-
panded, resulting in formation of fingers, i.e., liquid rivulets
protruding towards the dry region. Related experiments on
laser melting of thin metal films �4� demonstrated that dy-
namics of dewetting in evaporating liquid films with a large
number of dry patches is similar to dynamics of spinodal
decomposition in mixtures.

Several theoretical investigations of dewetting in thin
evaporating films �5–8� suggest that dynamics of dry patches
in polar liquids is determined by the interplay between long-
range van der Waals forces and short-range contributions to
the disjoining pressure from the electrical double layers.
Schwartz et al. �7� accounted for both contributions in their
two-dimensional simulations of thin films of volatile liquids
in the framework of a simplified evaporation model. Lyush-
nin et al. �8� studied stability of growing dry patches in liq-
uid films in the framework of a more elaborate evaporation
model but they did not consider the effects of heat transfer in
the film and thermocapillary stresses at the vapor-liquid in-
terface. We also note that most mathematical models �5,8�
are limited to ultrathin films �of thickness �10 nm�, while
experimental studies often involve films which are thicker by
orders of magnitude.

Significant progress in understanding the effects of evapo-
ration and heat transfer on viscous flow near a contact line
has been made in several studies of steady menisci in contact

with heated surfaces �9–12�. Dry areas on heated surfaces are
modeled in these studies by microscopic adsorbed films
which are in thermodynamic equilibrium with both solid and
vapor phases due to van der Waals forces. The contact line is
then defined as the region of rapid change of interfacial cur-
vature, i.e., the front between “wet” and “dry” parts of the
substrate. While originally developed for steady contact lines
�9–12�, this approach has been incorporated into models of
unsteady viscous flows as well, e.g., in a recent study of
axisymmetric spreading of volatile droplets on heated
surfaces �13�.

In the present study we describe coupled liquid flow and
heat transfer in evaporating films using the general frame-
work of the previous studies �9–13�, but our model of dis-
joining pressure accounts for contributions from both van der
Waals forces and electrical double layers. The latter is sig-
nificant for polar liquids, such as water, on most substrates.
The effects of disjoining pressure, thermocapillary stresses,
and evaporation intensity on an isolated growing dry patch
are investigated. Furthermore, the mathematical model of
contact lines based on the works of Potash and Wayner �9�
and Moosman and Homsy �10� is incorporated into numeri-
cal simulations of evolution of complicated two-dimensional
vapor-liquid interfaces. These numerical simulations allow
us to investigate fingering instability and interaction of grow-
ing dry patches in evaporating liquid films.

II. FORMULATION

We consider a thin film of a volatile liquid of density �
and viscosity � on a heated rigid plate. The standard one-
sided model of evaporation �14� allows us to neglect all dy-
namical processes in the vapor. The plate temperature is el-
evated above the equilibrium saturation temperature at the
vapor pressure TS

*; the latter is used as the temperature scale.
We use the capillary scale C1/3�0 /R for the pressure, where
�0 is the surface tension at the temperature TS

*, R is the char-
acteristic length in the horizontal direction, also used as the
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length scale. The velocity scale U is determined from the
interfacial mass balance as described in Ref. �12�:

U =
kTS

*

�LR
,

where L is the latent heat of vaporization and k is the ther-
mal conductivity of the liquid. We define the capillary num-
ber as C=�U /�0 and develop our mathematical model based
on the assumption that the capillary number is a small
parameter.

Formulation of the governing equations and boundary
conditions for viscous flow and heat transfer in the film is
straightforward �12,15� and therefore is not repeated here.
The only aspect of the formulation that has to be discussed in
more detail is the relationship between the mass flux and
local temperature at the interface. Two phases are in equilib-
rium at the saturation temperature TS

* when pressures in both
phases are equal. In evaporating films considered in the
present study there is a pressure jump across the liquid-vapor
interface due to capillarity and disjoining pressure. This pres-
sure jump and the evaporative mass flux across the interface
J �scaled by �UC1/3� are the factors that affect the local in-
terfacial temperature. Assuming that corrections from each
are small, we can use the following nondimensional linear-
ized expression for Ti, the difference between the interfacial
and saturation temperatures scaled by C2/3TS

*:

Ti = KJ − ��p − pv� ,

K =
�U

2�vLC1/3
�2�R̄TS

*, � =
�0

L�RC1/3 . �1�

This condition has been derived based on kinetic gas theory
�9,10�, the parameters K and � characterize the effects of
evaporation kinetics and the pressure jump across the inter-

face on the local value of Ti; �v is the vapor density, R̄ is the
gas constant per unit mass.

A lubrication-type approach for steady evaporating films
on heated surfaces has been formulated in Ref. �12� based on
the assumption that the film thickness scales as C1/3R. This
approach can be extended to unsteady thin film flows, as was
shown in the context of spreading of thin volatile droplets on
heated surfaces �13�. The two-dimensional version of the
evolution equation for film thickness h derived in Ref. �13�
can be written in the form

ht −
���2h + �� − T0

K + h
+

1

3
� �h3 � ��2h + ���

−
M

2
� · �h2 � �T0 −

T0 − ���2h + ��
Kh−1 + 1

	
 = 0, �2�

where T0 is the scaled temperature of the heated rigid plate,
� is the disjoining pressure specified below, derivatives are
taken with respect to Cartesian coordinates x and y; both
axes are directed along the heated plate.

The second term on the left hand side of Eq. �2� is respon-
sible for evaporative mass losses, the third term is due to
viscous flow driven by a combination of capillary and dis-
joining pressure gradients, and the fourth term is a contribu-

tion from the Marangoni stresses. The modified Marangoni
number is defined by

M =
TS

*

�0
�d�

dT
� ,

the surface tension is assumed to be a decreasing linear func-
tion of temperature. Equation �2� is the key equation in our
analysis. Once it is solved for the film thickness h�x ,y , t� all
other field variables are known.

Since many important dry-out experiments are carried out
for polar liquids, e.g., water on mica surface �3�, we use the
appropriate expression for the disjoining pressure in the form

� = S exp�− �h� + 	/h3. �3�

This formula allows us to describe uniform microscopic
films formed by the combined action of long-range and
short-range forces. The latter are characterized by a nondi-
mensional parameter S=SPed0/l0�R /�0l0� �SP is the polar
component of the spreading coefficient, d0 is the molecular
interaction distance, and l0 is the Debye length�, � is the ratio
of the initial film thickness and the Debye length, and 	 is the
scaled Hamaker constant �	= �A� / ��0R2C��. The case of non-
polar liquids considered in Refs. �12,13� can be easily recov-
ered by taking S=0.

III. CONTACT LINE SPEED

Shapes of dry patches observed in experiments with
evaporating films are often quite complicated, but the basic
physical effects contributing to their evolution can be under-
stood using the one-dimensional version of Eq. �2�. In this
section, we assume that the film thickness is a function of x
and t only and solve the evolution equation numerically on
an interval �0,L� for constant T0 using a finite-difference
approach. BDF method from the standard DVODE solver
�16� is used to describe the interface evolution in time
numerically.

Let us now specify the boundary conditions for Eq. �2�.
We note that the value x=L corresponds to the slowly and
uniformly drying region of the film, which implies

hx�L� = 0, �4�

hxxx�L� = 0. �5�

Near x=0, the solid surface is assumed “dry” from the mac-
roscopic point of view, i.e., it is covered with a microscopic
adsorbed film where the evaporative mass flux is suppressed
by van der Waals forces. Thickness of this equilibrium film is
found from the condition of zero mass flux across the inter-
face. For nonpolar liquids, this condition gives

haf = �	�

T0
	1/3

,

while for polar liquids haf is found from the zero-flux con-
dition numerically.

Since the film is flat at x=0, all derivatives have to be
zero. This was relatively easy to satisfy for steady contact
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lines �12� when an ordinary differential equation for the in-
terface profile was solved using a shooting method. How-
ever, for unsteady interface evolution considered in the
present work the number of boundary conditions for the evo-
lution equation is limited and so it is not clear a priori how
to ensure that all derivatives are zero near x=0. A remarkable
feature of the numerical solution illustrated below is that the
miscroscopic film remains flat near x=0 when only two
boundary conditions are specified in the form

h�0� = haf, hx�0� = 0.

The initial condition is a discontinuous function equal to haf
for �0,L /3� and equal to 1 on the remaining two thirds of the
interval.

Let us first study liquid-vapor interface evolution in non-
polar liquids by running the simulation with S=0 in the ex-
pression for the disjoining pressure given by Eq. �3�. After a
very short transient period the solution becomes smooth and
evolves further on relatively slow time scales. Snapshots of
typical interface shapes are shown in Fig. 1�a� for L=20 and
600 mesh points; values of all nondimensional parameters
are listed in the caption. Formation of the capillary ridge
observed in experiments is clearly seen in the simulations as
well. The interface deformation is localized near the dry
area. Far away from it the film simply dries out by evapora-
tion in a uniform fashion. We have chosen a relatively large
value of 	 to make the microscopic film visible, but the code
has been tested for values of 	 down to 10−6. Such small and
more physically realistic values of 	 are used later in this
article to simulate growth and interaction of circular dry
patches. The values of the kinetic parameter K for water
films are on the order of 10−2 or 10−3 under typical experi-
mental conditions, the dimensional superheat that corre-
sponds to T0=0.1 is approximately 0.3 K. We note that the
small values of nondimensional parameters, especially 	, im-
pose severe limitations on the applicability of the
lubrication-type approach used in the present study. How-
ever, this approach is known to produce results which are in
good agreement with experiments and numerical simulations
even outside the range of its formal asymptotic validity �15�.

Details of the vapor-liquid interface shape are rarely in-
vestigated experimentally, while data for the time-dependent
position of the contact line is easy to obtain. Therefore it is
important to be able to record contact line position based on
our simulations as well. Let us define the position of the
contact line as the point of maximum curvature of the inter-
face. This definition is appropriate since the contact line in
our approach is a highly localized region of rapid change of
interfacial slope. Typical results for contact line position ver-
sus time for a nonpolar liquid are shown in Fig. 1�b�. The
contact line speed increases slightly with time, which can be
explained by a higher intensity of evaporation in films of
smaller thickness at the late stages of dry-out.

Let us now consider polar liquids and use the appropriate
form of the expression for the disjoining pressure, Eq. �3�
with S=1 and �=10.9. Here we consider very thin films of
water �in the range of thickness between 10 and 100 nm� and
choose parameter values �listed in the caption� which are
based on the dimensional values used in Ref. �8� to describe

experimental results on dry-out in polar liquids �A=10−20 J,
d0=0.2 nm, l0=0.6 nm�. The initial condition is again a dis-
continuous function that jumps from the unit thickness to the
adsorbed film value. Typical results are illustrated in Fig. 2.
Initially the evolution is similar to the case of nonpolar liq-
uids shown above: the thicker part of the film decreases its
height by evaporation and a capillary ridge is formed ahead
of the moving contact line. However, at the later stages of
evolution, the presence of electrical double layer results in
rapid decrease of the thinning rate of the film and significant
decrease in the height of the capillary ridge. The latter in fact
becomes almost impossible to observe. The motion of the
contact line can then be described as propagation of a front
between two different equilibrium values of film thickness,
the contact line speed becomes essentially constant, in agree-
ment with experimental observations of dry-out in polar liq-
uids �3�. This regime has been studied by Lyushnin et al. �8�
in the framework of a slightly different model of evaporating
films. The contact line speed as a function of evaporation
kinetic parameter K is shown in Fig. 3. Clearly, for higher

FIG. 1. Snapshots of the interface deformation �a� and position
of contact line �b� for nonpolar liquids �S=0�, K=0.02, �=10−2,
	=10−4, T0=0.1, M =0.
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evaporation rate �lower K� the contact line speed is higher
since evaporation is the driving force of the expansion of dry
patches. The maximum speed is achieved when the kinetic
effects at the interface are negligible �K=0�.

Thermocapillary effect can have a significant influence on
dewetting in evaporating films. Marangoni stresses are
coupled to temperature field in the liquid, so they cannot be
described in the framework of models that do not include
heat transfer in the film. The present model is free from this
limitation: the evolution equation �2� provides a consistent
description of thermocapillary stresses in terms of the modi-
fied Marangoni number M. An interesting feature of the
simulation results for nonzero M is that the effect of ther-
mocapillarity on the contact line speed can be different de-
pending on film thickness. For thicker films, the contact line
speeds up due to Marangoni effect, while for thinner films
thermocapillarity has the opposite effect. This is illustrated in
Fig. 4 for M =2 �solid line�, where both effects are captured

at different stages of film evolution �dashed line corresponds
to M =0�. The speed-up of the contact line is not difficult to
explain: it has to do with the fact that temperature near the
contact line is higher and so Marangoni flow tends to speed
up the removal of liquid. In order to understand the slow-
down observed for thinner films, we investigated the inter-
face shape for different values of M and observed that liquid
tends to accumulate in the capillary ridge. This accumulation
results in a significant reduction of the evaporation rate and
thus slows down the contact line.

IV. FINGERING INSTABILITY

Fingering instabilities have been studied extensively for
isothermal thin film flows driven by gravity. Experimental
observations of a viscous flow down an inclined plane show
that an initially straight contact line can become unstable,
resulting in formation of fingers, i.e., liquid rivulets protrud-
ing towards the dry area �17�. Mathematical models that de-
termine the criteria for such instability have been formulated
using a lubrication-type framework �18�.

When body forces are negligible but temperature in the
film is nonuniform, the main physical effects that can affect
contact line dynamics are thermocapillarity and evaporation.
Careful investigations of the former were carried out and
included results on both stability criteria and nonlinear evo-
lution of the contact lines �19,20�. Evaporation has received
much less attention even though experimental studies �3� in-
dicate that fingering instabilities can develop in evaporating
thin films. Lyushnin et al. �8� studied fingering instabilities in
the model of growing dry patches in ultra-thin films and
showed both analytically and numerically that evaporation
can have a stabilizing effect on this instability. However, the
model of Ref. �8� is limited to a relatively narrow range of
physical parameters when the moving front between two
steady ultrathin films is observed and is based on the as-
sumption of negligible Marangoni stresses. In the present

FIG. 2. Snapshots of the interface for polar liquid, S=1,
�=0.1, 	=10−2, T0=0.003, �=10.9, M =0, K=0.02.

FIG. 3. Contact line speed as a function of kinetic parameter for
polar liquids S=1, �=0.1, 	=10−2, T0=0.003, �=10.9.

FIG. 4. The effect of Marangoni stresses on the contact line
speed for K=0.02, �=10−2, S=0, 	=10−4, T0=0.1. Position of con-
tact line is shown for M =2 �solid line� and M =0 �dashed line�.

VLADIMIR S. AJAEV PHYSICAL REVIEW E 72, 031605 �2005�

031605-4



study we use the model from Sec. II to study the combined
effect of thermocapillarity and evaporation on fingering in-
stabilities.

Let us first consider the case of large values of K which
corresponds to negligible evaporation and choose the sub-
strate temperature profile in the form

T0 = T00 + Gy . �6�

We discuss the instability in a two-dimensional framework
suggested, e.g., in Ref. �8�. For a fixed value of M =2 and a
range of L, we observe that small perturbations of initially
straight contact line grow to form fingers, as illustrated in
Fig. 5�a� �for the limiting case of K−1=0�. This behavior is
similar to the dynamics observed by Sur et al. �20� in the
framework of a slightly different model. When evaporative
mass flux is included in the formulation, it acts to supress the
instability. In order to describe this effect quantitatively, we
introduce the difference between the largest and the smallest
values of y along the contact line, scaled by its initial value.
This quantity, denoted by a, is shown in Fig. 5�b� as a func-
tion of time for K−1=0.01. Clearly, even for relatively weak

evaporation the Marangoni-driven fingering instability is
suppressed. When the Marangoni number is increased, the
initial growth rate of instability also increases for the case of
negligible evaporation, but for K−1=0.01 the instability is
still suppressed for a range of values of M.

The instability illustrated in Fig. 5�a� is most likely due to
a capillary mechanism that has to do with formation of the
capillary ridge ahead of the moving contact line. This mecha-
nism is analogous to Rayleigh instability of liquid jets and
cylinders. We note that in experiments the effect of surfac-
tants may also be important as discussed, e.g., in Ref. �21�.

V. DRY PATCHES IN THREE-DIMENSIONAL
SIMULATIONS

Let us now study formation and interaction of dry patches
using the full two-dimensional numerical solution of the dif-
ferential equation �2� for film thickness. Significant potential
of disjoining pressure models for such simulations has been
demonstrated in the literature in the framework of simplified
evaporation models �7�. In the simulations discussed below
we assume the liquid to be nonpolar, i.e., we choose the
expression for � that includes only van der Waals forces,
although similar results can be obtained for polar liquids.
Computational domain is a square box of dimensions L
L.

We start by considering a single dry patch. The initial
condition for the simulation is chosen as an axisymmetric
step function that jumps from an ultrathin film to a macro-
scopic film of uniform thickness. The interface shape be-
comes rather smooth on a very fast time scale and then
propagates without changing its shape significantly. A typical
snapshot of the dry patch is shown in Fig. 6�a�. This dynam-
ics is similar to that discussed in Sec. III. We note that the
characteristic capillary ridge is formed ahead of the boundary
of the expanding dry area. The rate of expansion can be
recorded from the numerical simulation based on the posi-
tion of the contact line. Since the contact line in our simula-
tion is in fact a transition region associated with rapid change
of curvature, there are several possible definitions of its po-
sition. We choose the point of maximum curvature as
the definition of the contact line and plot its position in Fig.
6�b�. The dependence is close to linear, but the growth rate of
the dry patch increases with time slightly. This is an indica-
tion of the fact that the overall average film thickness de-
creases and thus evaporation becomes more intense. We note
that this effect cannot be captured by the models that assume
the front to be a transition zone between two regions of uni-
form thickness.

An important advantage of the description of contact line
proposed in the present study is that it allows one to simulate
topological changes in films with many dry areas of arbitrary
shape without any special subroutines for tracking contact
lines. In order to illustrate this we consider interaction and
merger of dry patches into a single dry area. The results of
simulations for the two patches are presented in Fig. 7. Snap-
shots of contact lines are shown at equal time intervals. As a
result of interaction, both patches clearly change their shape.
Initially, interaction slows down growth of each dry patch.
This stage is followed by rapid acceleration of fronts towards

FIG. 5. �Color online� �a� Typical shape of a finger formed due
to action of Marangoni stresses in the limit of weak evaporation. �b�
The effect of evaporation on scaled perturbation amplitude for
�=10−2, 	=10−4, M =2, G=−1, S=0, and K−1=0.01.
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each other until the dry areas merge completely. This rapid
dynamics can be explained by the decrease of the amount of
liquid in the film between the patches.

We note that merger of the dry areas is easily handled by
the code without any numerical difficulties, which clearly
indicates the significant potential of the moving contact line
model, developed in Ref. �13� and extended to polar liquids
in the present work, for simulations of complicated wetting
phenomena in evaporating liquid films. The present approach
is somewhat analogous to phase field methods for simula-
tions of moving interfaces. The contact line is represented as
a region of rapid change of curvature and therefore topologi-
cal changes are handled easily.

VI. CONCLUSIONS

Dewetting in evaporating liquid films is characterized by
nucleation of localized macroscopically dry patches. Several
investigations suggested that these dry areas are in fact cov-
ered by microscopic films that are in equilibrium with the

vapor due to disjoining pressure. In the present work, this
idea is incorporated in a carefully developed model of vis-
cous flow, heat transfer, and evaporation in the film around
growing dry patches. We demonstrate that the model can be
used to describe complicated evolution of a two-dimensional
interface in three-dimensional space and is capable of han-
dling topological changes in the system, e.g., merger of two
dry patches.

For an isolated patch growing from an initially small dry
area in otherwise uniform evaporating film we have recorded
the contact line position as a function of time. We have found
two different scenarios for growth of dry patches. For non-
polar liquids, the equilibrium microscopic film is formed due
to van der Waals forces and contact line speed slightly in-
creases with time as the dry patch grows. For polar liquids
the equilibrium in the adsorbed film is due to a combination
of van der Waals forces and formation of electrical double
layers, contact line speed quickly approaches a constant
value.

Simulations indicate that a capillary ridge is formed ahead
of a growing dry patch. The ridge is more well defined for
nonpolar liquids and provides a physical mechanism for an
instability of the moving contact line which is indeed ob-
served for a range of parameter values. The result of the
instability is formation of fingers, i.e., liquid rivulets protrud-
ing toward the dry region. Thermocapillary forces are shown
to increase the height of the capillary ridge and decrease the
expansion rate of the dry patch if the film is sufficiently thin.
For thicker films, Marangoni stresses tend to speed up ex-
pansion since they assist in removal of liquid from the re-
gions near the dry area. Studies of two interacting dry
patches indicate that at high separation distances the patches
slow each other down, while rapid dynamics is observed as
they come closer and finally merge.
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FIG. 6. �Color online� Typical interface shape �a� and dry patch
radius as a function of time �b� for K=0.01, �=10−3, 	=10−6,
S=0, T0=0.1.

FIG. 7. Snapshots of contact line obtained from simulations of
two-dimensional surface of evaporating liquid taken at equal time
intervals separated by �t=1 for K=0.01, �=10−3, 	=10−6,
T0=0.1.
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